It seems the sci-fi industry has done it again. Predictions made in novels like Johnny Mnemonic and Neuromancer back in the 1980s of neural implants linking our brains to machines have become a reality.
Back then it seemed unthinkable that we’d ever have megabytes stashed in our brain as Keanu Reeves’ character Johnny Mnemonic did in the movie based on William Gibson’s novel. Or that The Matrix character Neo could have martial arts abilities uploaded to his brain, making famous the line, “I know Kung Fu.” (Why Keanu Reeves became the poster boy of sci-fi movies, I’ll never know.)
But today we have macaque monkeys that can control a robotic arm with thoughts alone. We have paraplegics given the ability to control computer cursors and wheelchairs with their brain waves.
Of course this is about the brain controlling a device. But what about the other direction where we might have a device amplifying the brain? While the cochlear implant might be the best known device of this sort, scientists have been working on brain implants with the goal to enhance memory.
This sort of breakthrough could lead to building a neural prosthesis to help stroke victims or those with Alzheimer’s. Or at the extreme, think uploading Kung Fu talent into our brains.
In this current study the scientists had rats learn a task, pressing one of two levers to receive a sip of water. Scientists inserted a microchip into the rat’s brain, with wires threaded into their hippocampus. Here the chip recorded electrical patterns from two specific areas labeled CA1 and CA3 that work together to learn and store the new information of which lever to press to get water. Scientists then shut down CA1 with a drug. And built an artificial hippocampal part that could duplicate such electrical patterns between CA1 and CA3, and inserted it into the rat’s brain. With this artificial part, rats whose CA1 had been pharmacologically blocked, could still encode long-term memories. And in those rats who had normally functioning CA1, the new implant extended the length of time a memory could be held.
The next step is to test the device in monkeys, and then in humans.